Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Evol ; 9(1): vead035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325085

RESUMO

Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between ß-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.

2.
Microbiol Resour Announc ; 11(2): e0003822, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175112

RESUMO

Twenty-nine circular genomes of bacteriophages in the orders Caudovirales and Petitvirales were identified from fecal samples from Pacific flying foxes that were collected from their roosting sites on the Pacific Island of Tonga in 2014 and 2015. The vast majority are microviruses (n = 25), with 2 siphoviruses, 1 myovirus, and 1 podovirus.

3.
Infect Genet Evol ; 95: 105070, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34481994

RESUMO

Circoviridae is a family of circular single-stranded DNA viruses whose members infect a wide variety of hosts. While well characterized in avian and mammalian hosts, little is known about circoviruses associated with Antarctic animals. From 48 Weddell seal (Leptonychotes weddellii) fecal samples collected on the sea ice in McMurdo between Nov 2014 and Dec 2014, we identified and determined the genomes of novel viruses that fall within two genera of the family Circoviridae, i.e. Circovirus (n = 7) and Cyclovirus (n = 45). We named these viruses as werosea circovirus (WerCV) and werosea cyclovirus (WerCyV). The genomes of WerCV and WerCyV share ~63-64% genome-wide pairwise identity with classified circoviruses and cycloviruses, respectively. Based on the species demarcation threshold of 80% for members of the Circoviridae, the genomes of WerCV and WerCyV represent new species in their respective genera. Evidence indicated recombination in five of the 45 WerCyV genomes identified in this study. These are the first circoviruses found associated with Antarctic pinnipeds, adding to those recently identified associated with Adélie (Pygoscelis adeliae) and chinstrap penguins (P. antarcticus).


Assuntos
Infecções por Circoviridae/veterinária , Circoviridae/isolamento & purificação , Genoma Viral , Animais , Circoviridae/classificação , Circoviridae/genética , Infecções por Circoviridae/virologia , Circovirus/classificação , Circovirus/genética , Circovirus/isolamento & purificação , Focas Verdadeiras
4.
Arch Virol ; 165(12): 2891-2901, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32893316

RESUMO

Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identified through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17).


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/isolamento & purificação , Genoma Viral , Plantas/virologia , Austrália , Brasil , Vírus de DNA/classificação , França , Metagenômica , Filogenia , África do Sul , Estados Unidos
5.
J Exp Bot ; 70(18): 4631-4642, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31106830

RESUMO

Phi thickenings are specialized secondary walls found in root cortical cells. Despite their widespread occurrence throughout the plant kingdom, these specialized thickenings remain poorly understood. First identified by Van Tieghem in 1871, phi thickenings are a lignified and thickened cell wall band that is deposited inside the primary wall, as a ring around the cells' radial walls. Phi thickenings can, however, display structural variations including a fine, reticulate network of wall thickenings extending laterally from the central lignified band. While phi thickenings have been proposed to mechanically strengthen roots, act as a permeability barrier to modulate solute movement, and regulate fungal interactions, these possibilities remain to be experimentally confirmed. Furthermore, since temporal and spatial development of phi thickenings varies widely between species, thickenings may perform diverse roles in different species. Phi thickenings can be induced by abiotic stresses in different species; they can, for example, be induced by heavy metals in the Zn/Cd hyperaccumulator Thlaspi caerulescens, and in a cultivar-specific manner by water stress in Brassica. This latter observation provides an experimental platform to probe phi thickening function, and to identify genetic pathways responsible for their formation. These pathways might be expected to differ from those involved in secondary wall formation in xylem, since phi thickening deposition in not linked to programmed cell death.


Assuntos
Brassica/fisiologia , Raízes de Plantas/metabolismo , Thlaspi/fisiologia , Brassica/citologia , Parede Celular/fisiologia , Raízes de Plantas/citologia , Estresse Fisiológico , Thlaspi/citologia
6.
Plants (Basel) ; 7(2)2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921823

RESUMO

Phi thickenings are specialized bands of secondary wall deposited around radial walls of root cortical cells. These structures have been reported in various species from the Brassicaceae, including Brassica oleracea, where previous reports using hydroponics indicated that they can be induced by exposure to salt. Using roots grown on agar plates, we show that both salt and sucrose can induce the formation of phi thickenings in a diverse range of species within the Brassicaceae. Within the genus Brassica, both B. oleracea and B. napus demonstrated the formation of phi thickenings, but in a strongly cultivar-specific manner. Confocal microscopy of phi thickenings showed that they form a complex network of reinforcement surrounding the inner root cortex, and that a delicate, reticulate network of secondary wall deposition can also variously form on the inner face of the cortical cell layer with phi thickenings adjacent to the endodermal layer. Results presented here indicate that phi thickenings can be induced in response to salt and water stress and that wide variation occurs in these responses even within the same species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...